
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Quantifying the relationship between co-expression, co-regulation 
and gene function
Dominic J Allocco*1,2, Isaac S Kohane1,3 and Atul J Butte1,3

Address: 1Informatics Program, Children's Hospital, Boston, MA, USA, 2Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, 
MA, USA and 3Division of Endocrinology, Children's Hospital, Boston, MA, USA

Email: Dominic J Allocco* - allocco@chip.org; Isaac S Kohane - isaac_kohane@harvard.edu; Atul J Butte - atul_butte@harvard.edu

* Corresponding author    

Abstract
Background: It is thought that genes with similar patterns of mRNA expression and genes with
similar functions are likely to be regulated via the same mechanisms. It has been difficult to
quantitatively test these hypotheses on a large scale because there has been no general way of
determining whether genes share a common regulatory mechanism. Here we use data from a
recent genome wide binding analysis in combination with mRNA expression data and existing
functional annotations to quantify the likelihood that genes with varying degrees of similarity in
mRNA expression profile or function will be bound by a common transcription factor.

Results: Genes with strongly correlated mRNA expression profiles are more likely to have their
promoter regions bound by a common transcription factor. This effect is present only at relatively
high levels of expression similarity. In order for two genes to have a greater than 50% chance of
sharing a common transcription factor binder, the correlation between their expression profiles
(across the 611 microarrays used in our study) must be greater than 0.84. Genes with similar
functional annotations are also more likely to be bound by a common transcription factor.
Combining mRNA expression data with functional annotation results in a better predictive model
than using either data source alone.

Conclusions: We demonstrate how mRNA expression data and functional annotations can be
used together to estimate the probability that genes share a common regulatory mechanism.
Existing microarray data and known functional annotations are sufficient to identify only a relatively
small percentage of co-regulated genes.

Background
It is axiomatic in functional genomics that genes with sim-
ilar mRNA expression profiles are likely to be regulated via
the same mechanisms [1,2]. This hypothesis is the basis
for almost all attempts to use mRNA expression data from
microarray experiments to discover regulatory networks.
Several investigators have provided indirect evidence for
this hypothesis by clustering genes according to their
mRNA expression profiles and then showing that genes in

a cluster often share common upstream sequence motifs
[3-5]. Ideker et al detailed examples of genes known to be
regulated by a common transcription factor where the
expression profiles of the co-regulated genes were highly
correlated [6]. Despite supporting evidence and some
known examples, the link between co-expression and co-
regulation has not been directly tested or quantified on a
large scale. Doing so would solidify the theoretical basis
for using mRNA expression data to identify regulatory
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networks. It would also be useful, in a practical sense, for
investigators to know what level of expression similarity
was required for genes to have a certain probability of hav-
ing a common regulatory mechanism.

It has been difficult to measure or analyze the relationship
between co-expression and co-regulation previously
because there has been no "gold standard" for determin-
ing whether or not two genes are regulated by a shared
transcription factor. Recently however, Lee et al described
a genome wide binding analysis in which they quantified
the in vivo binding of known S. cerevisiae transcription
factors to the promoter sequence of almost all known
yeast open reading frames (ORFs) [7]. Though by no
means fully complete or accurate, their data greatly
increase our knowledge of transcriptional regulation in
yeast and provide the needed quantitative measure of the
likelihood that two given yeast ORFs are bound by the
same transcription factor. In vivo transcription factor
binding is not precisely equivalent to being regulated by
the same transcription factor. The overlap is considerable,
however, and shared transcription factor binding is likely
to be a good proxy for co-regulation.

In this paper, we use publicly available microarray data in
combination with the transcription factor binding data
from Lee et al to investigate and quantify the link between
co-expression and co-regulation. In particular, we com-
bine this data to estimate the probability that two genes
are bound by a common transcription factor as a function
of the correlation between the expression profiles of the
two genes. We also develop a more general measure of
similarity in regulatory mechanism and relate this to sim-
ilarity in mRNA expression.

Other investigators have shown that genes with similar
functions frequently have similar patterns of mRNA
expression [8-10]. Here, we also investigate the link
between functional similarity and likelihood of being
bound by the same transcription factor. Finally, we com-
bine expression data with functional annotation in an
attempt to develop a better predictive model of co-regula-
tion.

Results and discussion
Co-expression and co-regulation
We downloaded all publicly available micorarray data for
S. cerevisiae from the Stanford Microarray Database
[11,12]. We then downloaded Lee et al's transcription fac-
tor binding data from their website [13]. We restricted our
analysis to those genes in the microarray data set which
had at least one transcription factor which bound
upstream of the gene according to the binding data. This
left us with data on 2284 genes across 611 arrays.

To measure similarity in expression we calculated the pair-
wise correlation coefficient between the mRNA expression
profiles of all genes in our data set. Initially, there were
2,607,186 gene pairs in our analysis. If both genes in the
pair shared the same promoter region, we excluded the
pair from the analysis. After excluding these gene pairs,
there were 2,606,473 gene pairs. For each pair of genes we
also determined if there was a common transcription fac-
tor which bound to the promoter region of both genes.
Figure 1 shows the observed fraction of gene pairs which
share a common transcription factor binder as a function
of the correlation between the expression profiles of the
two genes. The figure demonstrates that genes with strong,
positively correlated expression profiles are much more
likely to be bound by a common transcription factor than
genes with less strongly correlated expression profiles.
This effect is present, however, only at relatively high cor-
relation coefficients. In order for two genes to have a 50%
chance of sharing a common regulator, the correlation
between their expression profiles must be 0.84. There
were 168,994 pairs of genes which had a common tran-
scription factor binder, but only 5,419 (3.2%) of these
pairs had a correlation greater than 0.84.

Fraction of Gene Pairs Sharing a Common Transcription Fac-tor Binder vs. Correlation CoefficientFigure 1
Fraction of Gene Pairs Sharing a Common Tran-
scription Factor Binder vs. Correlation Coefficient In 
this figure each point represents a ratio – the denominator is 
the number of gene pairs where correlation in expression 
profile is between x and x+.01 and the numerator is the 
number of those gene pairs that share a common transcrip-
tion factor. The actual yeast data is represented by blue ●  
and the control data (where the mapping between genes and 
promoters is permuted) by red ■ . The observed fraction of 
gene pairs sharing a common transcription factor increases 
when the correlation between the expression profiles of the 
two genes is high.
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As a control, we randomly permuted the mapping
between genes and their promoter regions. As Figure 1
shows, when the analysis described above was repeated
using this permuted data, there was no relationship
between correlation in expression profile and shared tran-
scription factor binding. We also performed two addi-
tional permutation tests. For the first of these, we
permuted the relationship between transcription factors
and their target genes. For the second additional permuta-
tion test, we randomly permuted the expression profiles
for each gene. No relationship between correlation in
expression profile and shared transcription factor binding
was seen when either of these additional permutations of
the data was used in the analysis (data not shown). These
controls provide evidence that the relationship between
correlation and shared transcription factor binding
observed in actual yeast data is extremely unlikely to be
due to chance alone. Instead, it is a result of the co-regula-
tory mechanisms that do exist in yeast.

We also defined a measure of regulatory closeness, c(X,Y),
which was designed to capture more distant regulatory
relationships between genes. c(X,Y) is inversely propor-
tional to the path length between genes X and Y in a graph
where nodes represent genes and edges are drawn
between each transcription factor and the genes to which
it binds (see Methods). If two genes (X and Y) are regu-
lated by two different transcription factors, but both of
those transcription factors are regulated by the same tran-
scription factor, then c(X,Y) will be high. Figure 2 shows a
plot of c(X,Y) versus correlation coefficient. Like Figure 1,
this graph also suggests that co-expressed genes are likely
to share common regulatory mechanisms. When this
broader measure of co-regulation is used, the effect is
apparent at less extreme correlation coefficients and also
appears to be present for strong, negative correlations. A
similar relationship is not seen when permuted data is
used in the analysis. Note that when the mapping
between genes and their promoter regions is permuted,
the natural regulatory network of transcription factors is
perturbed and c(X,Y) tends to be smaller for any given cor-
relation in expression profiles. This same effect is also seen
when the relationship between transcription factors and
their target genes is permuted.

The above analysis included all genes in the data set,
regardless of whether or not the genes themselves were
transcription factors. We also looked specifically at the sit-
uation where one gene in the pair was a transcription fac-
tor. Ideker et al published examples of cases where the
mRNA expression profiles of a transcription factor and the
genes it regulated were strongly correlated [6]. In our anal-
ysis, we did not observe that the correlation between two
genes tended to be higher than average if one of the genes
was a transcription factor which regulated the other gene.

In fact, a strong correlation between a gene X and tran-
scription factor A was more likely to be explained by the
presence of transcription factor B which bound both A
and X (data not shown).

Our analysis used data from 611 microarrays covering a
wide variety of experimental conditions. In many cases,
however, researchers have much smaller and more limited
data sets. To investigate how the link between co-expres-
sion and co-regulation depended on the number and type
of experiments in the data set we repeated the above anal-
yses using only selected subsets of the microarray data. We
created subsets by randomly selecting experiments and
also by choosing experiments related to either cell-cycle,
starvation or the stress response. We chose to examine
cell-cycle, starvation and stress related experiments
because they provided relatively large data sets and
because they have been well studied in the past [14-16].
By choosing different threshold correlation coefficient
levels above which gene pairs are predicted to have a
shared transcription factor binder, different levels of sen-
sitivity and specificity can be obtained. For each data
subset, we chose a threshold correlation coefficient r such
that 75% of all gene pairs whose correlation in expression
profile was greater than r had a shared transcription factor

Regulatory Closeness vs. Correlation CoefficientFigure 2
Regulatory Closeness vs. Correlation Coefficient Each 
point shows the mean regulatory closeness for gene pairs 
whose correlation in expression profile is between x and 
x+.01. The actual yeast data is represented by blue ●  and 
the control data (where the mapping between genes and 
promoters is permuted) by red ■ . The mean regulatory 
closeness c(X,Y) increases with the absolute value of the 
correlation between the expression profiles of genes X and 
Y.
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binder. We then determined what percentage of the total
number of gene pairs sharing a common transcription fac-
tor had a correlation in expression profile greater than r.
To state this in a different way, we evaluated the sensitivity
of expression data for detecting shared transcription factor

binding when positive predictive value was held constant
at 75%.

Figure 3 shows how r and sensitivity vary as a function of
the number of microarray experiments in the mRNA
expression data. The analysis illustrates several important
points. First, as the number of microarrays in a data set
decreases, a higher threshold correlation coefficient is
required to achieve a given positive predictive value. Sec-
ond, performance in finding pairs of genes with shared
transcription factors initially improves as the number of
microarray experiments increases, but this effect levels off
after approximately 100 microarrays are used. Third, ran-
domly selected data sets composed of arrays spanning a
diversity of experimental conditions are more informative
overall than similarly sized data sets relating to a single
experimental condition.

Functional similarity vs. co-regulation
One major difficulty in testing the hypothesis that func-
tionally similar genes are likely to be co-regulated is the
problem of defining functional similarity. There is no
commonly accepted methodology for doing this. Here we
used the Gene Ontology (GO) classification system [17]
to define two measures of functional similarity. For our
first measure of functional similarity, which we termed
the minimum node count method, we determined for
each GO term how many genes in our data set were anno-
tated with that GO term. We termed this the node count
for a GO term. For our purposes, a gene was considered to
be annotated with a given GO term if it was directly anno-
tated with the term or if it was annotated with a descend-
ent of that term. Then for each pair of genes we found all
GO terms that were annotated to both genes in the pair
and determined the node count for each GO term. We
took the smallest node count as our measure of functional
similarity. Small minimum node counts thus represented
significant functional similarity while gene pairs with
larger minimum node counts were less similar function-
ally. As examples, the GO term "microtubule binding"
had a node count of 5, while the GO term "binding" had
a node count of 443.

For our second measure of functional similarity, we
defined GO term levels. Level 1 GO terms were defined as
terms whose distance from the root of the ontology was 1
(for example, direct child terms of "molecular function").
Using this method, "microtubule binding" is a level 5 GO
term, while "binding" is a level 1 GO term. Two genes
were considered to have matching level 1 GO terms if they
each were annotated with a GO term that was a descend-
ent of the same level 1 term. Levels 2 through 8 were sim-
ilarly defined to represent increasingly similar levels of
function.

Threshold Correlation Coefficient and Sensitivity vs. Number of MicroarraysFigure 3
Threshold Correlation Coefficient and Sensitivity vs. 
Number of Microarrays Labeled data points represent 
selected subsets as follows: A – starvation, B – cell cycle, C – 
stress response, D – all data. All other data points, marked 
by blue ● , indicate the mean value for 10 randomly selected 
data sets of the given size. The bars show one standard devi-
ation. The curves shown are fit using only the randomly cho-
sen subsets. A) The threshold correlation coefficient r, 
chosen such that 75% of all gene pairs with correlation 
greater than r share a common transcription factor, 
decreases as the number of microarrays increases. B) Sensi-
tivity (the ratio of the number of gene pairs which both share 
a common transcription factor and have an expression cor-
relation greater than r to the total number of gene pairs 
which share a common transcription factor) when threshold 
correlation is chosen such that positive predictive value is 
75%, increases with the number of microarrays used up to a 
limit of 2.8%. Random sets of microarrays showed greater 
sensitivity for finding gene pairs bound by a common tran-
scription factor than predetermined sets of microarrays.
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Figure 4 shows the fraction of gene pairs that share a com-
mon transcription factor binder as a function of mini-
mum node count. Figure 5 is similar, but uses GO term
levels instead of minimum node count as the measure of
functional similarity. Both of these measures are only
proxies for true functional similarity. Although small

node counts generally reflect significant functional simi-
larity, the minimum node count method is misleading
when large numbers of functionally similar genes are
annotated with the same GO term. The ribosomal genes
are an example of this, and these genes account for many
of the outliers in Figure 4. Functional similarity as defined
by GO term level is also problematic in that it is highly
dependent on the complexity and depth of annotation in
each ontology. Figure 5b appears to suggest that the
molecular function ontology is more useful for identify-
ing co-regulated genes than the biological process ontol-
ogy. However, this is likely due to the fact that higher level
GO terms in the biological process ontology are generally
broader and more inclusive than terms at the correspond-
ing level of the molecular function ontology (as is sug-
gested by the number of gene pairs which match at each
level in the two ontologies). As an example, consider the
level 1 GO term "cellular process" from the biological
process ontology. Knowing that two genes are both
involved in a "cellular process" is unlikely to provide
much information about the regulation of the two genes.
Nevertheless, despite the inherent flaws in each of these
measures of functional similarity, use of either measure

Co-regulation vs. Functional Similarity as Defined by Mini-mum Node CountFigure 4
Co-regulation vs. Functional Similarity as Defined by 
Minimum Node Count A, B and C were created using the 
biological process, molecular function and cellular compo-
nent ontologies, respectively. The dark black lines are fit 
using the actual yeast data (individual data points represented 
as blue ● ). The thin red lines are fit using data where the 
mapping between genes and their promoters is permuted. 
For clarity, the individual data points representing permuted 
data are not shown. For each of the three ontologies, the 
fraction of gene pairs sharing a common transcription factor 
binder increases as functional similarity increases (i.e. as the 
minimum node count decreases).
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Co-regulation vs. Functional Similarity as Defined by Level of GO Term MatchFigure 5
Co-regulation vs. Functional Similarity as Defined by 
Level of GO Term Match BP, MF and CC refer to the 
biological process, molecular function and cellular compo-
nent ontologies, respectively. A) The number of gene pairs 
which have matching GO terms decreases as the strictness 
of the required match increases. B) The fraction of gene pairs 
sharing a common transcription factor binder increases as 
the level of functional similarity increases, particularly for the 
BP and MF ontologies.
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shows that genes with similar functional annotations tend
to share common regulatory mechanisms.

The above analysis, which shows an association between
functional annotation and regulatory mechanism, sug-
gests that functional annotations can be useful in identi-
fying co-regulated genes. This conclusion is confounded
by the fact that knowledge of regulatory mechanisms may

(and almost certainly does to at least some extent) influ-
ence functional annotation. If functional annotation was
solely a reflection of existing knowledge about regulatory
mechanisms, we would still observe an association
between functional annotation and regulatory mecha-
nism even though functional annotation would not be
useful for identifying novel co-regulated genes. One of the
limitations of our study is that we are not able to exclude
this effect. Doing so would require an assessment of gene
function which was unbiased by existing knowledge of
regulatory mechanisms. As far as we know, such an assess-
ment of gene function does not exist. We suspect,
however, that the functional annotations from Gene
Ontology do contain a significant amount of other
information not based on prior knowledge of regulatory
mechanisms. To the extent that this is true, the observed
association between functional annotation and regulatory
mechanism is indicative of the utility of functional anno-
tations in identifying co-regulated genes.

Using co-expression and functional similarity to predict 
co-regulation
Figures 6 and 7 show how likely two genes are to be co-
regulated, as estimated by the fraction of gene pairs
sharing a common transcription factor binder, when cor-
relation in expression profile and functional similarity are
both taken into account. Both figures suggest measures of
similarity in expression and function provide
independent information about similarity in regulatory
mechanism. Functional annotations are particularly help-
ful in identifying co-regulated gene pairs when there is an
intermediate level of correlation (i.e. 0.5 < r < 0.8)
between expression profiles. Genes with this level of pair-
wise correlation in expression are likely to share a com-
mon transcription factor binder only if they have similar
functional annotations. As discussed in the previous sec-
tion, our study may overestimate the utility of functional
annotation to the extent that functional annotations
merely reflect existing knowledge of regulatory
mechanisms.

Conclusions
Our study demonstrates that if two genes have highly cor-
related expression profiles, there is likely to be a common
transcription factor which binds to the promoter regions
of both genes. Given that common transcription factor
binding is expected to be a good proxy for co-regulation,
our study provides strong support for the widely held sup-
position that co-expressed genes are likely to be co-regu-
lated. In S. cerevisiae, two genes have a 50% chance of
having a common transcription factor binder if the corre-
lation between their expression profiles is equal to 0.84.
This threshold allows the identification of approximately
3.2% of all gene pairs which share a common binder. It
remains to be seen how these numbers change in other

Co-regulation vs. Co-expression and Functional Similarity as Defined by Minimum Node CountFigure 6
Co-regulation vs. Co-expression and Functional Simi-
larity as Defined by Minimum Node Count A, B and C 
were created using the biological process, molecular function 
and cellular component ontologies, respectively. For each of 
the three ontologies, the gene pairs are divided into two 
groups – those with minimum node counts less than the 10th 

percentile and greater than the 10th percentile. At higher lev-
els of correlation in expression profile, gene pairs with 
greater functional similarity are more likely to share a com-
mon transcription factor binder.
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Co-regulation vs. Co-expression and Functional Similarity as Defined by Level of GO Term MatchFigure 7
Co-regulation vs. Co-expression and Functional Similarity as Defined by Level of GO Term Match A, B and C 
were created using the biological process, molecular function and cellular component ontologies, respectively. For each of the 
three ontologies, the fraction of gene pairs sharing a common transcription factor binder is shown as a function of both corre-
lation in expression profile and the level of GO term match.
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species, but they should sound a cautionary note to those
using less similar expression profiles in an attempt to
identify co-regulated genes. Many commonly used clus-
tering methodologies will link genes on the basis of rela-
tively weak similarities in expression which, based on the
results of our study, are unlikely to correlate with direct
co-regulation. This may be one explanation for the lim-
ited success of many attempts using clustering techniques
to identify co-regulated genes.

Success in using expression data to identify genes with
shared transcription factor binders is also crucially
dependent on the number and type of experiments in the
expression data. While more data is better, our study sug-
gests that the marginal benefit to additional microarrays is
small after approximately 100 microarrays are used.
Diversity in the type of experiment is particularly impor-
tant and increasing the breadth of experimental condi-
tions covered is likely to significantly increase the power
of mRNA expression data to predict patterns of co-regula-
tion.

Using mRNA expression data to identify co-regulated
genes is currently the focus of many research groups. Most
of the methodologies for identifying co-regulated genes
using microarray data are fundamentally based on
pairwise measures of expression similarity. Our study pro-
vides an estimate of the performance in finding genes with
shared transcription factor binders of one very commonly
used pairwise measure of expression similarity, the Pear-
son correlation coefficient. We also show how known
functional annotations can potentially be used to create a
better predictive model of co-regulation. This study will
hopefully give investigators using related methodologies
better insight into which computationally predicted inter-
actions are likely to be real and make it easier to decide
which results are worthy of further biological
investigation.

The use of genome wide binding data and the technique
we describe for quantititatively evaluating the success of a
method for identifying co-regulated genes are broadly
applicable. We encourage other investigators to similarly
evaluate the performance of any proposed
methodologies. This will greatly facilitate evaluation and
comparison of these methodologies.

Methods
Microarray data
As of mid April 2003, the Stanford Microarray Database
contained the results of more than 600 microarray exper-
iments on S. cerevisiae conducted by multiple different
investigators under a wide variety of experimental condi-
tions. If the same ORF appeared more than once on a
given array, the mean value was used. Spots flagged as

unreliable in the database were excluded from the analy-
sis. If a gene or array had more than 20% of its values
missing or flagged as unreliable, that gene or array was
also excluded from the analysis. The log (base 2) R/G nor-
malized ratio of sample to control was used as the
measure of mRNA expression. Median centering was per-
formed over the arrays. All of the above are default or
commonly used options implemented directly through
the Stanford Microarray Database interface. After applying
these filters, we had data for 6156 ORFs across 611 arrays.
We further restricted our analysis to ORFs which had at
least one transcription factor which bound upstream
according to Lee et al's binding data. This left us with data
on 2284 ORFs.

Binding data
The binding data from Lee et al contained information on
6270 yeast genes. Each yeast gene was mapped to one of
4532 distinct promoter regions. The binding data con-
sisted of a binding score for each combination of the 4532
promoter regions with the 106 transcription factors
whose binding they were able to characterize. Following
Lee et al, we considered that a transcription factor bound
to a promoter region if its binding score was less than
0.001. Lee et al estimated that this cutoff would identify
about two thirds of all transcription factor-promoter inter-
actions and would have a false positive rate of 6–10% [7].

Permuted data and controls
As a control, we permuted the mapping between genes
and their promoter regions. The analysis was redone using
this permutation of the binding data and the results are
displayed as a control in our figures. We also repeated our
analysis using two other permuted data sets. For each gene
X, the 106 transcription factors bound to the promoter
region of X with binding score Bi (with i ranging from 1 to
106). We randomly permuted the Bi for each gene X. For
the second additional control, we permuted the expres-
sion values Xk (with k ranging from 1 to 611) for each
gene X.

Calculating positive predictive value and sensitivity
It is necessary to choose a threshold correlation coefficient
r in order to define positive predictive value and
sensitivity. Let A be the number of gene pairs where corre-
lation in expression profile is greater than r, B be the
number of gene pairs that share a common transcription
factor binder and C be the number of gene pairs that both
share a common transcription factor binder and have a
correlation in expression profile greater than r. Then pos-
itive predictive value is C/A and sensitivity is C/B. Note
that Figure 1 is not a graph of positive predictive value
because each point (x,y) represents only those gene pairs
where r = x, as opposed to r > x.
Page 8 of 10
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Measuring similarity in expression profile
For each pair of genes, we calculated the Pearson correla-
tion coefficient between the genes' mRNA expression pro-
files as follows:

Individual arrays were only used in the calculation if the
expression values for both genes were non-missing. We
chose to use the Pearson correlation coefficient because it
is one reasonable and widely used similarity metric,
though other choices were possible.

Functional annotation
We obtained Gene Ontology (GO) annotations for each
yeast ORF from the Saccharomyces Genome Database
[18]. Each ORF was assigned one or more GO terms from
each of the biological process, molecular function and cel-
lular component ontologies.

Defining regulatory closeness
Our measure of regulatory closeness was motivated by a
desire to capture the relationship between genes that,
while not directly regulated by the same transcription fac-
tor, still shared a common regulatory mechanism. In
order to do this, we constructed a graph where each gene
(including transcription factors) was a node. Edges were
drawn between a transcription factor and a gene if the
transcription factor bound to the gene. The regulatory
closeness of genes X and Y was defined to be c(X,Y) = 1/d
where d was the length of the shortest path between two
genes. Each edge was counted as having a length of one.
As an example, consider the situation where transcription
factor A bound to gene X and transcription factor B bound
to both gene Y and to transcription factor A. In this exam-
ple, c(X,Y) = 1/3. If there was no path between genes X and
Y, c(X,Y) was defined to be zero. For computational rea-
sons, we also defined c(X,Y) to be zero if d was greater
than 20.

Defining similarity in function
For each GO term A we defined a node count N(A) and a
level L(A). The node count N(A) was set equal to the
number of genes in our data set that were annotated with

GO term A or one of its descendents. L(A) was defined as
the shortest distance from A to the root of the ontology
(where the distance between a parent and a child GO term
was defined to be 1). For each gene X we found the set
A(X) such that A(X) contained all GO terms that X was
annotated with directly and their ancestors. Then for each
gene pair (X,Y) we found the intersection of A(X) and
A(Y). Our first measure of functional similarity, the mini-
mum node count, was defined as the smallest node count
of the GO terms in the intersection of A(X) and A(Y). For
our second measure of similarity, based on GO term lev-
els, we defined X and Y as having a level Q match if one of
the GO terms in the intersection of A(X) and A(Y) had
level Q.

As an example of the minimum node count method sup-
pose gene X is annotated with the following GO terms
(where each term is a descendent of the previous term):
molecular function->binding->amino acid binding-
>glutamate binding, and gene Y is annotated with: molec-
ular function->binding->amino acid binding->glycine
binding. Suppose further that there are 2283, 504 and 121
genes annotated with molecular function, binding and
amino acid binding, respectively. Then the minimum
node count for X and Y would be 121.

As an example of GO term levels suppose that gene X is
annotated with: biological process->physiological
processes->metabolism->carbohydrate metabolism->car-
bohydrate catabolism, and gene Y is annotated with bio-
logical process->physiological processes->metabolism-
>carbohydrate metabolism->carbohydrate biosynthesis. X
and Y have matching level 1, 2 and 3 GO terms – but do
not have a matching level 4 GO term.
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